Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 436(7): 168414, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38141874

RESUMO

The lysine acetyltransferase KAT5 is a pivotal enzyme responsible for catalyzing histone H4 acetylation in cells. In addition to its indispensable HAT domain, KAT5 also encompasses a conserved Tudor-knot domain at its N-terminus. However, the function of this domain remains elusive, with conflicting findings regarding its role as a histone reader. In our study, we have employed a CRISPR tiling array approach and unveiled the Tudor-knot motif as an essential domain for cell survival. The Tudor-knot domain does not bind to histone tails and is not required for KAT5's chromatin occupancy. However, its absence leads to a global reduction in histone acetylation, accompanied with genome-wide alterations in gene expression that consequently result in diminished cell viability. Mechanistically, we find that the Tudor-knot domain regulates KAT5's HAT activity on nucleosomes by fine-tuning substrate accessibility. In summary, our study uncovers the Tudor-knot motif as an essential domain for cell survival and reveals its critical role in modulating KAT5's catalytic efficiency on nucleosome and KAT5-dependent transcriptional programs critical for cell viability.


Assuntos
Histonas , Lisina Acetiltransferase 5 , Nucleossomos , Domínio Tudor , Acetilação , Cromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Nucleossomos/metabolismo , Lisina Acetiltransferase 5/química , Lisina Acetiltransferase 5/genética , Lisina Acetiltransferase 5/metabolismo , Humanos
2.
Chempluschem ; 88(3): e202200392, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36775805

RESUMO

Encapsulation of hydrophobic molecules in protein-based nanocages is a promising approach for dispersing these molecules in water. Here, we report a chemical modification approach to produce a protein nanocage with a hydrophobic interior surface based on our previously developed nanocage, TIP60. The large pores of TIP60 act as tunnels for small molecules, allowing modification of the interior surface by hydrophobic compounds without nanocage disassembly. We used four different hydrophobic compounds for modification. The largest modification group tested, pyrene, resulted in a modified TIP60 that could encapsulate aromatic photosensitizer zinc phthalocyanine (ZnPC) more efficiently than the other modification compounds. The encapsulated ZnPC generated singlet oxygen upon light activation in the aqueous phase, whereas ZnPC alone formed inert aggregates under the same experimental conditions. Given that chemical modification allows a wider diversity of modifications than mutagenesis, this approach could be used to develop more suitable nanocages for encapsulating hydrophobic molecules of interest.


Assuntos
Compostos Organometálicos , Fotoquimioterapia , Compostos Organometálicos/química , Fármacos Fotossensibilizantes/química , Oxigênio Singlete/química , Lisina Acetiltransferase 5/química , Interações Hidrofóbicas e Hidrofílicas
3.
Oncogene ; 40(50): 6707-6719, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34650217

RESUMO

Aberrant glucose metabolism and elevated O-linked ß-N-acetylglucosamine modification (O-GlcNAcylation) are hallmarks of hepatocellular carcinoma (HCC). Loss of phosphoenolpyruvate carboxykinase 1 (PCK1), the major rate-limiting enzyme of hepatic gluconeogenesis, increases hexosamine biosynthetic pathway (HBP)-mediated protein O-GlcNAcylation in hepatoma cell and promotes cell growth and proliferation. However, whether PCK1 deficiency and hyper O-GlcNAcylation can induce HCC metastasis is largely unknown. Here, gain- and loss-of-function studies demonstrate that PCK1 suppresses HCC metastasis in vitro and in vivo. Specifically, lysine acetyltransferase 5 (KAT5), belonging to the MYST family of histone acetyltransferases (HAT), is highly modified by O-GlcNAcylation in PCK1 knockout hepatoma cells. Mechanistically, PCK1 depletion suppressed KAT5 ubiquitination by increasing its O-GlcNAcylation, thereby stabilizing KAT5. KAT5 O-GlcNAcylation epigenetically activates TWIST1 expression via histone H4 acetylation, and enhances MMP9 and MMP14 expression via c-Myc acetylation, thus promoting epithelial-mesenchymal transition (EMT) in HCC. In addition, targeting HBP-mediated O-GlcNAcylation of KAT5 inhibits lung metastasis of HCC in hepatospecific Pck1-deletion mice. Collectively, our findings demonstrate that PCK1 depletion increases O-GlcNAcylation of KAT5, epigenetically induces TWIST1 expression and promotes HCC metastasis, and link metabolic enzyme, post-translational modification (PTM) with epigenetic regulation.


Assuntos
Acetilglucosamina/química , Carcinoma Hepatocelular/patologia , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Neoplasias Pulmonares/secundário , Lisina Acetiltransferase 5/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/fisiologia , Processamento de Proteína Pós-Traducional , Transativadores/metabolismo , Acetilação , Animais , Apoptose , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proliferação de Células , Epigênese Genética , Transição Epitelial-Mesenquimal , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Lisina Acetiltransferase 5/química , Lisina Acetiltransferase 5/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transativadores/química , Transativadores/genética , Células Tumorais Cultivadas , Ubiquitinação , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cell Rep ; 30(12): 3996-4002.e4, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209463

RESUMO

MBTD1, a H4K20me reader, has recently been identified as a component of the NuA4/TIP60 acetyltransferase complex, regulating gene expression and DNA repair. NuA4/TIP60 inhibits 53BP1 binding to chromatin through recognition of the H4K20me mark by MBTD1 and acetylation of H2AK15, blocking the ubiquitination mark required for 53BP1 localization at DNA breaks. The NuA4/TIP60 non-catalytic subunit EPC1 enlists MBTD1 into the complex, but the detailed molecular mechanism remains incompletely explored. Here, we present the crystal structure of the MBTD1-EPC1 complex, revealing a hydrophobic C-terminal fragment of EPC1 engaging the MBT repeats of MBTD1 in a site distinct from the H4K20me binding site. Different cellular assays validate the physiological significance of the key residues involved in the MBTD1-EPC1 interaction. Our study provides a structural framework for understanding the mechanism by which MBTD1 recruits the NuA4/TIP60 acetyltransferase complex to influence transcription and DNA repair pathway choice.


Assuntos
Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Lisina Acetiltransferase 5/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Aminoácidos/metabolismo , Linhagem Celular , Dano ao DNA , Análise Mutacional de DNA , Humanos , Lisina Acetiltransferase 5/química , Modelos Moleculares , Ligação Proteica , Homologia Estrutural de Proteína
5.
FEBS Lett ; 592(7): 1221-1232, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29494751

RESUMO

Tat-interactive protein 60 consists of an N-terminal chromo barrel domain (TIP60-CB) and a C-terminal acetyltransferase domain and acetylates histone and nonhistone proteins in diverse cellular processes. While TIP60-CB is thought to recognize histone tails, molecular details of this interaction remain unclear. Here, we attempted a quantitative analysis of the interaction between the human TIP60-CB and histone peptides, but did not observe any detectable binding by either fluorescence polarization or isothermal titration calorimetry assays. We also determined the crystal structure of the TIP60-CB alone. Analysis of the apo-structure reveals a putative peptide-binding site that might be occluded by the basic side chain of a residue in a unique ß hairpin between the two N-terminal strands of the ß barrel, leading to the inability of TIP60-CB to bind histones.


Assuntos
Histonas/química , Lisina Acetiltransferase 5/química , Peptídeos/química , Sítios de Ligação , Histonas/genética , Histonas/metabolismo , Humanos , Lisina Acetiltransferase 5/genética , Lisina Acetiltransferase 5/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Domínios Proteicos
6.
EMBO Rep ; 19(2): 244-256, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29335245

RESUMO

The acetyltransferase TIP60 is regulated by phosphorylation, and we have previously shown that phosphorylation of TIP60 on S86 by GSK-3 promotes p53-mediated induction of the BCL-2 protein PUMA. TIP60 phosphorylation by GSK-3 requires a priming phosphorylation on S90, and here, we identify CDK9 as a TIP60S90 kinase. We demonstrate that a phosphorylation-deficient mutant, TIP60S90A, exhibits reduced interaction with chromatin, histone 3 and RNA Pol II, while its association with the TIP60 complex subunit EPC1 is not affected. Consistently, we find a diminished association of TIP60S90A with the MYC gene. We show that cells expressing TIP60S90A, but also TIP60S86A, which retains S90 phosphorylation, exhibit reduced histone 4 acetylation and proliferation. Thus, our data indicate that, during transcription, phosphorylation of TIP60 at two sites has different regulatory effects on TIP60, whereby S90 phosphorylation controls association with the transcription machinery, and S86 phosphorylation is regulating TIP60 HAT activity.


Assuntos
Quinase 9 Dependente de Ciclina/metabolismo , Lisina Acetiltransferase 5/metabolismo , Transcrição Gênica , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Cromatina/genética , Cromatina/metabolismo , Histonas/metabolismo , Humanos , Lisina Acetiltransferase 5/química , Modelos Biológicos , Proteínas Nucleares/metabolismo , Fosforilação , Ligação Proteica , RNA Polimerase II/metabolismo , Serina/química , Fatores de Transcrição/metabolismo
7.
J Exp Clin Cancer Res ; 36(1): 188, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29268763

RESUMO

BACKGROUND: The nuclear epigenetic integrator UHRF1 is known to play a key role with DNMT1 in maintaining the DNA methylation patterns during cell division. Among UHRF1 partners, TIP60 takes part in epigenetic regulations through its acetyltransferase activity. Both proteins are involved in multiple cellular functions such as chromatin remodeling, DNA damage repair and regulation of stability and activity of other proteins. The aim of this work was to investigate the interaction between UHRF1 and TIP60 in order to elucidate the dialogue between these two proteins. METHODS: Biochemical (immunoprecipitation and pull-down assays) and microscopic (confocal and fluorescence lifetime imaging microscopy; FLIM) techniques were used to analyze the interaction between TIP60 and UHRF1 in vitro and in vivo. Global methylation levels were assessed by using a specific kit. The results were statistically analyzed using Graphpad prism and Origin. RESULTS: Our study shows that UHRF1, TIP60 and DNMT1 were found in the same epigenetic macro-molecular complex. In vitro pull-down assay showed that deletion of either the zinc finger in MYST domain or deletion of whole MYST domain from TIP60 significantly reduced its interaction with UHRF1. Confocal and FLIM microscopy showed that UHRF1 co-localized with TIP60 in the nucleus and confirmed that both proteins interacted together through the MYST domain of TIP60. Moreover, overexpression of TIP60 reduced the DNA methylation levels in HeLa cells along with downregulation of UHRF1 and DNMT1. CONCLUSION: Our data demonstrate for the first time that TIP60 through its MYST domain directly interacts with UHRF1 which might be of high interest for the development of novel oncogenic inhibitors targeting this interaction.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Metilação de DNA/fisiologia , Lisina Acetiltransferase 5/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Epigênese Genética/fisiologia , Células HeLa , Humanos , Lisina Acetiltransferase 5/química , Ligação Proteica , Domínios Proteicos , Ubiquitina-Proteína Ligases
8.
Sci Rep ; 7(1): 3635, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28623334

RESUMO

PXR is a member of nuclear receptor superfamily and a well-characterized mediator of xenobiotic metabolism. The classical mode of PXR activation involves its binding to appropriate ligand and subsequent heterodimerization with its partner RXR. However, various factors such as post-translational modifications and crosstalk with different cellular factors may also regulate the functional dynamics and behavior of PXR. In the present study, we have identified that TIP60, an essential lysine acetyltransferase protein interacts with unliganded PXR and together this complex promotes cell migration & adhesion. TIP60 utilizes its NR Box to interact with LBD region of PXR and acetylates PXR at lysine 170 to induce its intranuclear reorganization. Also, RXR is not required for TIP60-PXR complex formation and this complex does not induce ligand-dependent PXR target gene transactivation. Interestingly, we observed that PXR augments the catalytic activity of TIP60 for histones. This is the first report demonstrating the exclusive interaction of TIP60 with PXR and uncovers a potential role for the TIP60-PXR complex in cell migration and adhesion.


Assuntos
Adesão Celular , Movimento Celular , Lisina Acetiltransferase 5/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Acetilação , Catálise , Adesão Celular/genética , Movimento Celular/genética , Núcleo Celular/metabolismo , Humanos , Ligantes , Lisina Acetiltransferase 5/química , Lisina Acetiltransferase 5/genética , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...